Parabola

Revision of concepts

We will now revise:

- Conic sections
 - Common definition
 - **Circle, Ellipse, Parabola, Hyperbola.**
- Standard Equation of a parabola
- Geometry of a standard parabola
- Shifted parabola
- General equation of a parabola
- Position of a point w.r.t the parabola and parametric point of a parabola.
- **Tangents**
 - Parametric form, Slope form, Point form
 - Properties

Normals

- Parametric form, Slope form, Point form
- **Geometric properties**
- Co-normal points
- **Standard notations**
 - Chord of contact
 - **Pair of tangents**
 - Chord with a given midpoint
- Other results and miscellaneous concepts to remember

P(x,y) is a variable point. It moves such that its distance from a fixed point (focus) and a fixed line (directrix) are at a constant ratio (eccentricity, e).

i. If e = 1, the conic is a parabola.

ii. If e < 1, the conic is an ellipse.

iii. If e > 1, the conic is a hyperbola.

iv. If e = 0, the conic is a circle.

v. If $e = \infty$, the conic is a pair of straight lines.

Parabola: e = 1

Parabolas in real life

Suspension Bridges

Ski Jumping

Path of a diver

Reflectors

Equation and geometry of a standard parabola

- x = a is the directrix.
- x = 0 (Y axis) is the tangent at the vertex
- Distance between focus and directrix = 2a
- Length of Latus rectum = 4a

 $y^2 = 4ax == b (y - y_0) = 4a (x - x_0)^2 ... (1)$

- For (1), vertex is (x_0, y_0) and axis is parallel to X axis.
 - Focus is (a, 0) + (x_o, y_o) i.e. (a + x, y_o)
 - Directrix is x = a + x_o
 - > All distances and geometric properties are same as that of $y^2 = 4ax$.
- When parabola equations are in the form of
 - y = Ax² + Bx + C ... (2) [or x = Ay² + By + C]
- Convert the equation to shifted parabola form by completing the square.

General equation of a conic and identification of a parabola

Conics are represented by the general equation of second degree:

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0 ... (1)$

• Let
$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$
, then $\Delta = \mathbf{0} \Rightarrow$ (1) represents a pair of lines.

• When $\Delta \neq 0$, the nature of conics is as follows:

Condition	Nature of conics
h = 0, a = b	A circle
h ² = ab	A parabola
h² < ab	An ellipse
h ² > ab	A hyperbola
h ² > ab, a + b = 0	A rectangular hyperbola

Position of a point w.r.t. $y^2 = 4ax$

- For a point P(x₁,y₁), find the value of $y_1^2 4ax_1$
- If $y_1^2 4ax_1 = 0$, point is on the parabola.
 - < 0, point is inside the parabola.
 - > 0, point is **outside** the parabola.

Parametric form of a point on the standard parabola

- Any point on y² = 4ax can be represented by (at², 2at)
- Similarly,

Parabola	Parametric point
y ² = - 4ax	(- at ² ,2at)
x ² = 4ay	(2at, at²)
x ² = - 4ay	(2at, - at²)

Properties of tangents

Segment of tangent (at P) between P and directrix subtends 90° at focus.

Foot of \perp from focus to tangent lies on tangent at vertex (i.e. Y- axis).

Tangents at end points of focal chord are \perp and meet at the directrix.

Normals

Slope form: $y = mx - 2am - am^3$

Parametric form: $y = -xt + 2at + at^3$ Point form: $y - y_1 = -\frac{y_1}{2a}(x - x_1)$ (x₁, y₁) Note: m = $-\frac{y_1}{2a}$ $\overrightarrow{y} - y_1 = -\frac{y_1}{2a}(x - x_1)$ 0

Co-normal points and their properties

If from P(h,k) three normals are drawn to $y^2 = 4ax$, then, $m_1 + m_2 + m_3 = 0 = t_1 + t_2 + t_3$ $m_1m_2 + m_2m_3 + m_3m_1 = \frac{2a-h}{a} = t_1t_2 + t_2t_3 + t_3t_1$ $m_1m_2m_3 = -t_1t_2t_3 = \frac{-k}{a}$

Properties:

- The centroid of △ ABC lies on the axis of the parabola.
- Three normals from P(h,k) are possible only if h > 2a.
- 3. Algebraic sum of slopes of normals is zero.
- 4. Algebraic sum of ordinates of A, B, C is zero.
- 5. Circle through A, B, C passes through the origin.

Standard Notations:

- Let $S = y^2 4ax$, $S_1 = yy_1 2a (x + x_1)$, $S_{11} = y_1^2 4ax_1$ Then,
- Equation of tangent at $P(x_1, y_1)$ on the parabola is $S_1 = 0$

Equation of chord PQ with given mid point P(x₁, y₁) is S₁ = S₁₁

• Equation of chord of contact, QR of external point $P(x_1, y_1)$ is $S_1 = 0$

• Equation of pair of tangents PQ, PR from $P(x_1, y_1)$ is $S.S_{11} = S_1^2$

Other useful results to remember

If P(t₁) and Q(t₂) are end points of a focal chord of y² = 4ax then, t₁t₂ = -1,

tangents at P and Q are \bot and meet at the directrix.

Reflection property of parabola:

If a ray of light is sent along a line parallel to the axis of the parabola, then the reflected ray passes through the focus and vice versa.

Other useful results to remember

 If P(x₁, y₁) is a point on y² = 4ax, and S (a, 0) is the focus, then
PS = x₁ + a = a(t² + 1) in parametric form.

If PQ is a focal chord, S is the focus, then semi-Latus Rectum is Harmonic Mean of PS and QS.

$$\frac{1}{PS} + \frac{1}{QS} = \frac{1}{a} = \frac{2}{SLR}$$

Miscellaneous Concept

Special form of non-standard parabola:

An equation of the form $(ax + by + c)^2 = \lambda (bx - ay + d) \dots (1)$

represents a parabola with axis ax + by + c = 0, and tangent at vertex being bx - ay + d = 0.

(Hint: The two lines are clearly \perp and (1) resembles Y² = 4aX where Y and X are distances from the set of \perp lines.)

Eg. $(x - y)^2 = 2(x + y - 1)$ represents a parabola with axis x – y = 0, tangent at vertex x + y – 1 = 0. Vertex is point of intersection of the two lines.

To identify focus, length of latus rectum etc, write the above equation as $D_1^2 = 4pD_2$ where D₁ and D₂ are distances of (x,y) from the two lines. Then apply geometry of parabolas.

The End 🙂